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Abstract

The analysis of large astronomical surveys increasingly

incorporates machine learning models to handle a diverse

set of tasks. It is important for the scientific analysis of

these surveys that the uncertainty of the models be well un-

derstood and the predictions properly calibrated. Here we

present an empirical study of MC-Dropout for a core pre-

diction problem in astronomy emphasizing how the mod-

eled uncertainty is influenced by changes in observing con-

ditions. We will show that while MC-Dropout results in im-

proved accuracy and better calibrated predictions there is

still an underestimation of uncertainty that needs to be ad-

dressed.

1. Introduction

We focus our experiments around the Large Synoptic

Survey Telescope (LSST)[7] a major ground based astro-

nomical survey. LSST will start to collect data in the early

2020s and operate for over ten years imaging tens of billions

of galaxies and allowing domain scientists to explore phe-

nomena from near earth asteroids to the large scale struc-

ture of the universe. Ground based surveys enable a large

acquisition of data and its processing, but comes with the

significant complication of having to factor in atmospheric

effects. The effects of the atmosphere can be modeled as the

convolution of a blurring function with the source. Due to

atmospheric turbulence this blurring functions can change

rapidly. In addition to the atmosphere the noise introduced

by the instrumentation needs be accounted for. This can be

successfully modeled an additive poisson noise.

A crucial inference problems in astronomical surveys

is the detection of objects in a given cutout image of the

sky. The outputs of a detection model are used in many

downstream tasks. It is important to be able to model un-

certainty and understand how it is characterized in differ-

Figure 1. Example of the same point in the sky with two galaxies

under the 25 different observing conditions. Five different values

for the FWHM of point spread function and five different values

for the rate of the additive poisson noise.

ent observing conditions. Poorly calibrated results can bias

downstream analysis and impact the science goals of the

survey. Gal and Ghahramani[3] showed that dropout and

other stochastic regularization techniques are equivalent to

performing variational inference over a bayesian neural net-

work for some family of priors. This technique has been

applied and extended with strong empirical performance in

a diverse set of computer vision tasks [6]. We have empir-

ically studied how this method performs as observing con-

ditions change and its practical use for astronomical appli-

cations.

2. Experiments

We use Galsim an astromical image simulation

package[8] to simulate LSST like images with a variable
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number of galaxies per image at 25 different observing con-

ditions from very good to poor. The number of galaxies per

image is poisson distributed with a rate of of about 1 galax-

ies per image (39.2 galaxies per square arc-minute. We use

two parameters to control the quality of the observing con-

ditions: the size of the atmospheric point spread function,

specified by its full width at half the maximum and the rate

of the additive poisson noise. Figure 1 shows an example of

the same point in the sky containing two galaxies under the

25 different observing conditions. We train a simple con-

volutional neural network with dropout to predict the num-

ber of galaxies in each image. Our training set consists of

50000 images with a random assignment for the possible

observing conditions. The validation set consists of 10000

images again with a random assignment for the observing

conditions. The test set consists of 10000 images, but each

image is generated for all possible observing conditions and

we study the uncertainty produced by MC-Dropout as the

observing conditions change.

Our network consists of two convolutional layers with 32

feature maps and 5x5 kernel size with a max pooling layer

of size 2x2 in between. Followed by 3 fully connected lay-

ers of size 120, 84 and 9 (the maximum number of galaxies

in an image). A relu nonlinearity and dropout is applied

after all layers except the last. At prediction time we use

100 MC-Dropout trials. Figures 2 and 3 show accuracy

and three different measures of uncertainty: entropy, mu-

tual information and variation ratios as defined by [2]. As

expected accuracy decreases and uncertainty decreases with

poorer observing conditions. Figure 4 shows a calibration

plot as defined by [5] comparing the calibration of using

MC-Dropout to a standard dropout approach for a single

observing condition. MC-Dropout results in improved cali-

bration. This observation is consistent across all observing

conditions.

We can also study uncertainty by using the predictive

distribution of each data point to infer a distribution of a

given property of our entire dataset. Sampling from the av-

erage distribution of the mc trials for each data point we

can construct an MC estimate of the number of galaxies

per arc minute as predicted by our network. We can com-

pare this distribution with the true number, 39.2, controlled

by our simulations. Figure 5 shows this distribution for

each observing condition. As we can see the true value

is not included posterior distribution. It is unclear if this

underestimation of uncertainty is due general properties of

variational inference or is specific to MC-Dropout. Further

there appears to be some conflict with figures 4 and 5 with

one showing strong calibration but the other indicating the

method is underestimating uncertainty.

Figure 2. As expected accuracy decreases as the size of the psf in-

creases and an increase in the rate parameter of the additive noise.

Figure 3. We use entropy, mutual information and variation ratios

to quantify uncertainty. As expected uncertainty increases with

poorer observing conditions.

3. Future Work

We have demonstrated that MC-Dropout can provide

useful measures of uncertainty and improve calibration for

a core astronomical problem. However it is also clear that in

some sense the model is underestimating uncertainty. Un-

derstanding the source of this underestimation and how if it

is possible to be resolved is an important direction for fu-

ture work. It is also important that any downstream analysis

which uses these estimates are aware of the underestima-

tion. Further future work will involve extending this more

complicated problems in astronomy and studying how it

will perform in specific hard cases such as when two objects

are blended (overlapping). This later problem of blending

is especially with certain cosmological probes such as weak

lensing[1]. Further study will also focus on more advanced

objection detection architectures like R-CNN[4] style mod-

els and how uncertainty is characterized in these networks

Acknowledgements

We would like to thank the MAPS program at UCI sup-

ported by the NSF award 1633631, the US Department of

Energy award DE-SC0009920, the NSF grant IIS 1254071

and DARPA W911NF-18-C-0015 for supporting this work.

18



Figure 4. An example calibration plot of a single observing condi-

tion comparing calibration from 100 mc trials to 1 mc trial (stan-

dard dropout). Using MC-Dropout improves calibration.
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Figure 5. Example of a short caption, which should be centered.
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